- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Keller, Sarah L (2)
-
Weakly, Heidi MJ (2)
-
Goetz, Gunnar J (1)
-
Li, Amy (1)
-
Pruitt, Emily L (1)
-
Wilson, Kent J (1)
-
Xu, Libin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This review describes the major experimental challenges researchers meet when attempting to couple phase separation between membranes and condensates. Although it is well known that phase separation in a 2D membrane could affect molecules capable of forming a 3D condensate (and vice versa), few researchers have quantified the effects to date. The scarcity of these measurements is not due to a lack of intense interest or effort in the field. Rather, it reflects significant experimental challenges in manipulating coupled membranes and condensates to yield quantitative values. These challenges transcend many molecular details, which means they impact a wide range of systems. This review highlights recent exciting successes in the field, and it lays out a comprehensive list of tools that address potential pitfalls for researchers who are considering coupling membranes with condensates.more » « less
-
Weakly, Heidi MJ; Wilson, Kent J; Goetz, Gunnar J; Pruitt, Emily L; Li, Amy; Xu, Libin; Keller, Sarah L (, Biophysical Journal)Researchers choose different methods of making giant unilamellar vesicles in order to satisfy different constraints of their experimental designs. A challenge that arises when researchers use a variety of methods is that each method may produce vesicles with a different average lipid ratio, even if all experiments use lipids from a common stock mixture. Here, we use mass spectrometry to investigate ratios of lipids in vesicle solutions made by five common methods: electroformation on indium tin oxide slides, electroformation on platinum wires, gentle hydration, emulsion transfer, and extrusion. We made vesicles from either 5-component or binary mixtures of lipids chosen to span a wide range of physical properties: di(18:1)PC, di(16:0)PC, di(18:1)PG, di(12:0)PE, and cholesterol. For a mixture of all five of these lipids, ITO electroformation, Pt electroformation, gentle hydration, and extrusion methods result in only minor shifts in lipid ratios (≤ 5 mol%) relative to a common stock solution. In contrast, emulsion transfer results in ~80% less cholesterol than expected from the stock solution, which is counterbalanced by a surprising overabundance of saturated PC-lipid relative to all other phospholipids. Experiments using binary mixtures of saturated and unsaturated PC-lipids and cholesterol largely support results from the 5-component mixture. In general, our results imply that experiments that increment lipid ratios in small steps will produce data that are highly sensitive to the technique used and to sample-to-sample variations. For example, sample-to-sample variations are roughly ±2 mol% for 5-component vesicles produced by a single technique. In contrast, experiments that explore larger lipid ratio increments or that seek to explain general trends and new phenomena will be less sensitive to sample-to-sample variation and the method used.more » « less
An official website of the United States government
